新闻中心
串联谐振现场使用控制方法
发布日期:2020-05-09 点击:1277次
讨论了几种常用的串联谐振单相全桥逆变器的功率和频率控制方法,比较了各种方法的优缺点,同时对脉宽加频率调制的方法进行了较深入的讨论。
随着可自关断电力电子器件的发展,串联谐振逆变电路获得越来越多的应用,各种适合于串联谐振逆变电路的控制方法不断出现。本文对常用的调幅控制、脉冲频率调制、脉冲密度调制以及谐振脉冲宽度调制等控制方法进行了讨论和比较。特别对脉宽加频率调制的控制方法进行了较详细的分析。
串联谐振逆变器基本结构
串联谐振逆变器的基本原理图包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。
串联谐振逆变器的控制方法
1、调幅控制(PAM)方法
调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。
这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。
2、脉冲频率调制(PFM)方法
脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。
图3谐振脉冲宽度调制
这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。
脉宽加频率调制方法
图3、图4及图5中为避免桥臂直通,S1、S4及S2、S3管应遵循先关断后开通的原则,S1、S4及S2、S3门极触发脉冲应有死区时间。因本文重点讨论控制方法,故图中没有画出。
从串联谐振负载的阻抗特性可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:
1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。
2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。
3、脉冲密度调制(PDM)方法
脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。
脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。
脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。
4、谐振脉冲宽度调制(PWM)方法
在图3中,谐振脉冲宽度调制是通过改变两对开关管的驱动信号之间的相位差来改变输出电压值以达到调节功率的目的。即在控制电路中使原来同相的两个桥臂开关(S1,S2)、(S3,S4)的驱动信号之间错开一个相位角,使得输出的正负交替电压之间插入一个零电压值,这样只要改变相位角就可以改变输出电压的有效值,最终达到调节输出功率的目的。
这种控制方法的优点是电源始终工作在谐振状态,功率因数高。但存在反并联二极管的反向恢复问题、小负载问题、软开关实现问题。
针对上述控制方法的优缺点,一些复合型控制方法的研究日益引起重视,脉宽加频率调制方法就是一种较好的控制方法。
在一般的逆变器中,常用的移相PWM方法的工作频率是固定的,不需考虑负载在不同工作频率下的特性。而在串联谐振感应加热电源中使用移相PWM方法时,则要求其工作频率必须始终跟踪负载的谐振频率,通常使某一桥臂的驱动脉冲信号与输出电流的相位保持一致,而另外一个桥臂的驱动脉冲信号与输出电流的相位则可以调节。图4和图5中,S1和S4驱动信号互补,S2和S3驱动脉冲信号互补,S1驱动信号相位与负载电流的相位保持相同,而S3的驱动脉冲与S1的驱动脉冲信号之间的相位差β在0°~180°范围内可调,调节β就可以调节输出电压的占空比,即调节输出功率。
根据输出电压和输出电流的不同相位关系,有2种PWM调节方式:升频式PWM和降频式PWM.
图5降频式PWM
1、升频式
在图4中,为保证滞后臂(S1,S4)触发信号前沿同电流信号同相,角频率须根据移相角β的大小改变。即在通过调节移相角β调节功率的同时改变频率f.在β调节过程中,在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小并滞后于输出电流,这说明输出频率也在不断升高,因此称这种调制方式为升频式PWM.这时S1、S4管各导通180°,已经实现ZCS.超前臂S2,S3在大电流下开通,D2,D3在大电流下关断因而有反向恢服。通过在S2、S3臂上串联电感也可实现ZCS.,这种方法适用于有关断尾部电流、关断损耗占主导的双极型器件,如IGBT,SIT,MCT等。同时应注意电路布局减小分布电感,以减小二极管反向恢复带来的电压尖峰。
输出功率为P=cos4
2、降频式
在图5中,调节β在增大输出脉冲宽度的同时,将引起输出电压相对于输出电流的相位不断减小,使相位差减小,这说明输出频率在不断降低,因此称这种方式为降频式PWM.
在这种方式下,二极管D2,D3均自然过零关断,D1,D4不导通,没有二极管反向恢复所带来的问题。S1、S4在零电流下开关(ZCS),S2、S3在大电流下关断。通过在S2、S3上并联电容即可实现ZVS.这种方法适和高频电源和内建反并联二极管反向恢复问题比较严重的器件,如MOSFET等。可避免二极管反向恢复所带来的电流尖峰和器件的损耗增加。
为保证超前臂触发信号前沿同电流信号同相,角频率为ω0=
输出功率为P=cos4
由以上分析可知,无论是升频式PWM,还是降频式PWM,两者有一个共同的特点,即在调节输出电压脉宽的同时,也改变了负载的工作频率。故称之为脉宽加频率调制方法。
结语
本文较详细地讨论了常用的串联谐振单相全桥逆变器的功率和频率控制方法,以及各种方法的优缺点,同时对脉宽加频率调制的方法进行了较深入的讨论,设计者可以根据负载的不同要求及不同的应用场合采用不同的控制方法。
串联谐振试验装置一般都是采用自动试验和手动试验2个试验功能模块,但是作为自动化高度集成化的今天,人们越来越依赖软件自动化带给我的便利,所以串联谐振试验装置的客户一般都试验自动试验进行操作。所以关于串联谐振自动试验无法完成的问题也比较多。下面我们就针对常见的现象进行分析。
1,调谐曲线完全是一条直线,调谐完成后仪器提示没有谐振点。原因:回路接地不好,试验回路接线错误,装置某一仪器开路。排除方法:检查接地装置可靠,接地连接线是否有断开点;检查励磁变压器的高低压线圈的通断;检查每一只电抗器的通断;检查分压器的信号线的通断;检查分压器的高低压电容臂的通断;装置自身升压时没有谐振点,还需要检查补偿电容器的通断;如果所有部件正常,依然没有谐振点,则需要与厂家工程师进行沟通!
2,调谐曲线是一条曲线,有较低的尖峰;试验时一次电压较高,高压却较低,甚至在没有升到试验电压时,一次电压已经到达额定电压,回路自动降压;原因:电抗器与试品电容量不匹配,没有准确找到谐振点;试品损耗较高,系统Q值太低;励磁变压器高压输出电压较低;排除方法:将补偿电容器并接入试验回路,加大回路电容量;尽可能将多只电抗器串联,提高回路电感量;提高励磁变压器的输出电压;干燥处理被试品,提高被试品的绝缘强度,减少回路的有功损耗。
3,如果调谐造到谐振点,但是在升压过程中无法达到试验电压。并降压停机的;原因:低压输入电压达到最大,而谐振产生的高压无法达到试验电压。处理方法:如果当时使用的是220V电压输入,可更换380V输入进行试验,一般情况下可以排除。如果使用380V的情况下还是无法解决的,则是由于此时整个串联谐振系统的品质因数过小,造成无功功率过大。此时可以通过改变电抗器进行解决,如果再无法解决则需要联系厂家进行解决。
1、所需的电源容量
以下是额定电压为110kV,电缆长度为2500m,横截面积为630mm2的XLPE电缆的示例。电缆的电容为0.188μF/km。测试参数估计如下。
测试电压:
高压电抗器电感值:L=40H
测试电压频率:f=36.6Hz
高压测试电流:I=14A
供电电流:I0≈50A
当使用传统的交流高压测试设备对上述电缆进行耐压测试时,所需的样品容量为P=14A×128kV=1792kVA,使用串联谐振法的串联电源所需的功率仅为P=50A×380V=19千瓦。串联谐振电源使用谐振电抗器和测试对象的电容通过频率调制谐振以产生高电压和大电流。在整个系统中,电源只需要提供消耗功率的系统部分。
2、设备的重量和体积连接到串联谐振电源,省去了繁琐的大功率电压调节装置和工频测试变压器,大大降低了测试设备的重量和体积,一般为1/3-1/5普通测试设备。
3、改善输出电压的波形
谐振电源是谐振滤波电路,可以改善输出电压的波形失真,获得良好的正弦波形,有效防止样品的谐波击穿意外损坏。
4、防止大的短路电流烧毁故障点。
在串联谐振状态下,当样品的绝缘弱点被破坏时,电路由于环路的电容值的变化而立即失谐,并且环路电流迅速减小。当并联谐振或测试变压器用于耐压测试时,击穿电流立即上升数倍。当测试对象发生故障时,两者的短路电流相差数百倍。因此,串联谐振可以有效地发现绝缘弱点,并且不用担心大的短路电流烧毁故障点。
5、没有恢复过电压。
当发生击穿时,由于谐振条件的损失,高压将立即消失,电弧瞬间熄灭,恢复电压将长时间重新建立。很容易再次达到闪络电压。断开电源,这个电压恢复过程是一个间歇性的能量积累过程,过程很长,并且没有恢复过电压。
变频串联谐振耐压装置 主要用途:
1、6kV-500kV高压交联电缆 的交流耐压试验;
2、6kV-500kV变压器 的工频耐压试验;
3、GIS和SF6开关 的交流耐压试验;
4、发电机的交流耐压试验;
5、其它电力高压设备如母线,套管,互感器的交流耐压试验。
与原始的设备相比:
在工频条件下,由于被试品电容量较大,或者试验电压要求较高,对试验装置的电源容量相应的也有较高的要求,传统的工频耐压装置(交流耐压试验变压器)往往单件体积大,重量重,不便于现场搬运,而且不便于任意组合,灵活性较差。相比,变频串联谐振试验装置(体积与重量约为传统油式试验变压器的1/3~1/4)由变频电源、励磁变压器、电抗器、分压器组成。特点:体积小,重量轻,结构复杂,成本高,接线繁多等。便携式交流工频耐压仪(由干式试验变压器、控制箱两部分组成)体积小,重量轻;,结构简单、可靠性高;可方便在现场使用。
串联谐振试验装置在高压耐压试验中的应用大大降低了高压耐压试验的难度。传统高压耐压试验有着试验设备大,不易搬动,试验效率慢等缺点。串联谐振高压耐压试验装置很好的克服了传统高压耐压试验的缺点,并在此基础上有了更大的改进,也让高压耐压试验变的更加有效率。
针对220Kv高压套管和主变压器、隔离开关等电气设备的交流耐压试验,串联谐振耐压试验装置具备宽泛的适用范围,同样也是各个高压试验部门、电力承装修试工程单位非常实用且好用的高压耐压测试设备。
串联谐振高压试品电源所需试品容量
串联谐振试验装置在高压耐压试验中的应用
四方国瑞是国内专业的电力承装(修、试)资质及电力承试设备研发生产企,专业针对不同电压等级的试验需求,定制不同配置的电气试验产品。四方国瑞电力24小时为您服务:027-61903638。